MERIS US Workshop

Vicarious Calibration Methods and Results

Presentation Overview

Recent results

- 1. CNES methods
 Deserts, Sun Glint, Rayleigh Scattering
- 2. Inter-sensor Uyuni
- 3. MOBY-AAOT
- 4. Vicarious Adjustment methodology

Older results

- 1. Dark Water
- 2. SIMBADA Ocean
- 3. Rail Road Valley Playa
- 4. Comparison with AATSR
- 5. Comparison with SCIAMACHY
- 6. Snow Targets

Calibration of MERIS using natural targets

Deserts, Sun Glint, Rayleigh Scattering (Claire Tinel, Patrice Henry, Olivier Hagolle - CNES)

Deserts

Sun glint

Rayleigh

These calibration methods are used operationally at CNES for POLDER 1, 2, 3, VEGETATION 1 and 2, for SPOT satellites, MERIS, FORMOSAT-2 and KOMPSAT-2

Calibration of MERIS using natural targets

- Definitions
 - Meris on board calibration is the nominal calibration method
 - Meris is calibrated against t.o.a. reflectance

$$DN_k = A_k.\tilde{n}_k.\cos(\hat{e}_s)$$

- · k: Spectral band
- DN: Digital Number (Meris Level 0, corrected for instrumental defects)
- · r: Reflectance

· A · Consitivity of instrument for spectral handle

$$\ddot{A}A_{k} = rac{A_{k,method}}{A_{k,L1}} = rac{ ilde{n}_{k,measured(L1)}}{ ilde{n}_{k,predicted} (Method)}$$

- Initial objectives:
 - In orbit vicarious calibration to assess:
 - Multiangular calibration (detectors normalization in the f.o.v.)
 - In time calibration monitoring (on-board calibration verification)
 - Intercalibration of sensors

- Main characteristics of the requested sites:
 - Stable in time: no vegetation...
 - Easy to access: low cloud coverage, good atn
 - · High reflectance: to reduce the impact of atmospheric effects
 - · Low directional effects

⇒ Choice : Desert sites

Desert Calibration Sites

• <u>Sites selection</u>:

SADE Data Base

- Systematic collect of satellite acquisition Operational monitoring of CNES sensors
 - SPOT(s)/High Resolution
 - SPOT(s)/Vegetation-1&2
 - PARASOL

Calibration monitoring and intercalibrati (through cooperation agreements v

- High resolution : Formosat-2 (Taiwar
- Medium resolution: MERIS (ESA), N

Archive of POLDER1&2, SeaWiFS, AVHI

Storage in a data base:

- · Easy data management
- Link between satellite measurements and calibration results (traceability)
- Nota: the SADE data base also includes calibration measurements over ocean, sun glint, clouds and snow covered sites.

Method

- Compare two sensors:
 - One sensor as reference
 - Comparison at TOA level

Reference Sensor

TOA

Atmospheric correction to surface reflectance

> **Surface reflectance** for reference sensor

SURFACE

Spectral resampling

Simulated ToA reflectance for sensor 2

Sensor 2 Measurement

Living Planet

Atmospheric correction to ToA reflectance

Surface reflectance for sensor 2

Need to account for:

Comparison: ΔA_{k}

- Directional effects
- Atmospheric conditions
- Spectral discrepancies

European Space Agency Agence spatiale européenne

MERIS US Workshop, Silver Springs, 14th July 2008

Geometry

- Directional effects:
 - Direct comparison of measurements in the same geometry (qs, qv, f)
 - Use of reciprocity principle to extend field of matching geometries

Processing

- Atmospheric correction:
 - Atmospheric correction performed using SMAC and meteo data:
 - Rayleigh scattering correction
 - Water vapour
 - Ozone
 - Other contributors: CO2, CO, NO2, CH4 (climatologies)
 - Problem: aerosol correction...
 - Aerosol optical thickness t = 0.2
 - Statistically solved through the use of a lot of data:
 no significant bias, but dispersion for short wavelengths

POLDER Comparison

Cross-calibration with PARASOL as a function of time (20 sites)

No significant variation with time

Rayleigh Calibration

- Observe the atmosphere over ocean (dark)
- Absolute calibration of bands < 700 nm
- Rayleigh scattering: > 80% of signal
- TOA reflectance well predicted using:
 - Successive Orders of Scattering
 - Smile effect correction
- Main error sources
 - ocean surface reflectance:
 - predicted using climatology derived from SeaWiF
 - only over very stable oceanic zones (oligotrophic zones)
 - aerosols: estimated using 865 nm band
 - Only optical thickness < 0.1 are kept
- Accuracy: 4 to 5% (3s) 2 to 3 % (RMS)

Rayleigh Calibration Sites

Choice of oligotrophic areas with 2 years of SeaWiFS data made in 2001 with ACRI and LOV (CLIMZOO zones)

Rayleigh Calibration

Results

No discrepancy greater than 2.5%

Calibration of MERIS using natural targets

- Sun glint calibration
 - observe the white reflection of the sun over the ocean surface
 - interband calibration w.r.t. a reference spectral band
 - TOA reflectance predicted using SOS code
 - Main error sources
 - Reference band calibration errors
 - ocean surface : SeaWiFS climatology
 - aerosols: fixed model used (M98, AOT:0.08)
 - daily SeaWiFS aerosol product used to discard cases when aerosol properties differ from reference model
- Accuracy: 3 to 4.5% (3s) 1.5 to 2% (RMS)

CSa Sun Glint Calibration Results

Band	Ref Bar	nd 620	Ref Band 708		
	ΔA_k	σ	ΔA_k	σ	
412	1.001	0.019	1.007	0.022	
442	0.993	0.017	1.000	0.020	
490	1.005	0.010	1.013	0.016	
510	0.990	0.007	0.997	0.130	
560	1.001	0.004	1.008	0.013	
620	-	-	1.007	0.011	
665	1.008	0.013	1.017	0.008	
681	1.010	0.010	1.019	0.008	
708	0.993	0.013	-	-	
753	1.015	0.031	1.021	0.026	
778	1.004	0.042	1.015	0.021	
865	1.012	0.031	1.023	0.016	
885	1.010	0.029	1.016	0.024	

Comparison of sun glint results using different reference bands

Rayleigh / Sun Glint

Still no discrepancy greater than 2.5%

Calibration of MERIS using natural targets

- Conclusions
 - MERIS instrument seems well calibrated
 - Rayleigh + glint + deserts
 - measurements agree with MERIS level 1 calibration (within 2 %)
 - Very good agreement between Rayleigh and sun glint calibration methods
 - no significant degradation with time
 - thanks to:
 - » MERIS calibration device
 - » MERIS good spectral calibration
 - Simultaneous validation of :
 - MFRIS calibration
 - CNFS calibration methods
- Perspective
 - Multitemporal calibration monitoring of 412 and 443 nm bands
 - MERIS/MODIS intercalibration over deserts

Inter-sensor at Uyuni

Data Selection Criteria: Reciprocal and identical doublets are kept if from the same day or differing by one day

Geometric selection criteria

10 deg > $\sqrt{[(SZA(i)-SZA(j))^2+(VZA(i)-VZA(j))^2+1/4x(abs(RAA(i))-abs(RAA(j)))^2]}$ (Equvalent to a difference of 5 deg for VZA & SZA and ±10 for RAA.)

Sensor Intercomparison
MERIS, MODIS, AATSR, PARASOL

Salar de Uyuni (Bolivia)

MODIS vs MERIS Very good agreement

Living Planet

LISE Analysis Moby, AAOT

Livina Plane

MERIS vicarious radiometric calibration Reconstruction of the Top-of-the-atmosphere (TOA) total radiance, to be compared to its observed value

Careful selection of input data ==> uno	certainty bud	dget <	5% in	the	near	infrared
			3% in			

Aerosol	[nm]	412	443	490	520		
Venise AAOT							
IOPA	Slope	0.972	0.970	0.953	0.965		
	R ²	0.98	0.97	0.93	0.92		
Junge	Slope	1.019	1.018	1.004	1.016		
	R ²	0.80	0.90	0.86	0.85		
SAM	Slope	0.996	0.994	0.979	0.991		
	R ²	0.90	0.90	0.84	0.83		
MOBY							
IOPA	Slope	0.957	0.951	0.927	0.910		
	R ²	0.87	0.79	0.56	0.27		
Junge	Slope	0.972	0.967	0.946	0.930		
	R ²	0.84	0.76	0.51	0.21		
SAM	Slope	0.961	0.954	0.930	0.912		
	R ²	0.83	0.74	0.48	0.16		

Good agreement in the blue, questionable in the NIR do to dominant backscattering geometry available from Moby.

Aerosol	[nm]	753	778	865					
	Venise AAOT								
IOPA	Slope	0.870	0.880	0.876					
	R ²	0.89	0.88	0.86					
Junge	Slope	0.910	0.900	0.879					
	R ²	0.86	0.87	0.87					
SAM	Slope	0.865	0.852	0.825					
	R ²	0.81	0.80	0.80					
	MOBY								
IOPA	Slope	0.660	0.635	0.566					
	R ²	-2.51	-2.46	-2.00					
Junge	Slope	0.681	0.654	0.570					
	R ²	-2.00	-1.99	-1.75					
SAM	Slope	0.961	0.954	0.930					
	R ²	-3.11	-3.21	-3.08					

Older Vicarious Results

Older results

- Dark Water
- SIMBADA Ocean
- Rail Road Valley Playa
- Comparison with AATSR
- Comparison with SCIAMACHY
- Snow Targets

Dark Water (LISE)

METHODOLOGY

- We use PPL radiance measurements instead of only AOT
- -Method reported in Santer & Martiny (AO, fev2003) : Computation of phase function as follows:

1- Correction of PPL measurements using the f corrective factor (correction for multiple scattering effects):

$$f = \left(\frac{L(1)}{L}\right)_{theo} \approx \left(\frac{L(1)}{L}\right)_{mes}$$

Order 0, f simulated with Junge
 Power Law as input of RTC (SOS)

2- Approximation of primary scattering:

 Iterations stop when f converges at 0.5%

Total Phase Function *
Total Single scattering albedo

Simulated MERIS Radiances

SIMBADA (LOA)

- Threshold:
 - AOT(865 nm) < 0.15
 - Measurement within +/- 3 hours from satellite overpass
 - No case 2 waters (high reflectance at 560 nm)

- · 23 independant pixels from 14 scenes
- AOT max : 0.15
- Within 3 hours from satellite overpass
- · Case 2 waters rejected

Rail Road Valley Playa

Collaboration RSL & UofA

MERIS	Center	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	412.545	-4.481	-0.604	-6.614	-10.879	3.080	-0.330	0.565
2	442.401	-5.193	-0.844	-3.141	-7.658	2.825	0.782	0.138
3	489.744	-4.861	-0.335	-1.267	-5.069	1.024	-0.541	-0.221
4	509.700	-2.037	2.356	1.147	-1.624	2.221	1.161	1.834
5	559.634	-1.727	2.543	1.530	0.054	0.832	0.449	2.080
6	616.620	-0.881	3.035	1.325	0.634	0.471	0.353	2.491
7	664.640	0.398	4.028	1.805	1.317	0.912	3.252	5.444
8	680.902	-0.123	3.442	0.674	0.298	-0.020	1.337	3.984
9	708.426	2.480	5.884	3.657	3.282	2.287	2.486	1.460
10	753.472	0.573	3.856	0.218	0.097	-0.387	-0.955	2.238
12	778.498	1.820	5.011	0.941	1.195	0.492	-0.097	3.388
13	864.833	1.622	4.512	-0.026	0.550	0.321	-0.364	3.096
14	884.849	1.619	4.465	-0.436	-0.083	-0.324	-0.950	2.253
Mean diff (%)	All Bands	1.820	2.140	1.752	2.518	1.169	1.004	2.246

Rail Road Valley Playa

Living Planet

Collaboration JPL & UofA

Agreement with VC computed radiances is generally within 4%.

MERIS radiances include 1.04 adjustment due to Terra/ Envisat time difference.

- VC PERIS

Comparison with AATSR

Surface	560 nm	670 nm	870 nm	
Deserts (Smith)	1.041	1.001	1.037	
Greenland (Smith)	1.034	1.012	1.037	
Clouds (Poulsen)	1.047	1.026	1.054	
Longyeardyen	1.026	1.024	1.038	
Barrows	1.024	1.001	1.023	

• Given the current state of knowledge, we (KNMI) propose that it is the reflectance data of SCIAMACHY instead of MERIS, that should be corrected.

Snow Targets

Vicarious calibration: 14 and 26 April 2003

Longyearbyne (ESA)

Barrows (JAXA)

Vicarious Adjustment Principle

- Based on the work currently lead at NASA for SeaWiFS and MODIS vicarious calibration, see Franz et al. 2007, Bailey et al. 2007.
- Consists in computing averaged multiplicative gains to correct the "TOA signal", thanks to a DB of reference in-situ signals:
 - → « TOA signal » = Level 2 reflectance pre-corrected for smile, gaseous absorption, glint, i.e. just before the Atmospheric Correction algorithm.
 - → rho_{gc}^{new}(I)=rho_{gc}(I)*G(I) for I in the VIS and NIR
- Two-step approach separating the NIR and VIS channels, avoiding an iterative procedure within the Atmospheric Correction algorithm:
 - First adjust two bands in the NIR with G(INIR)
 - Then, assuming a perfect AC, adjust the VIS with G(I_{VIS})
- The methodology fully imbricates the sensor response and the processing:
 - → The gains need to be updated each time a change occurs in the processing (LUTs, algorithm, L1b calibration, etc.)
 - a strong effort of traceability in the gain computation, with respect to all other processing parameters, should be maintained.

CSa Vicarious Gain Computation

Computation starts from the decomposition

$$r_{gc}(l)=r_{path}(l)+t_d(l)r_w(l)$$

Knowing the true (or targetted) signal through in-situ measurements, individual gains are computed matchups per matchups by

$$g_i(l) = [r_{path}^{\dagger}(l) + t_d^{\dagger}(l)r_w^{\dagger}(l)] / [r_{path}(l) + t_d^{\dagger}(l)r_w^{\dagger}(l)]$$

- Averaged gains are finally deduced by G(1)=Mean q:(1)
- In the NIR, two assumptions:
 - the water-leaving reflectance is truly negligible: r_(INTR)=0
 - the most NIR band (865 nm for MERIS) is perfectly calibrated: g (865)=1
- Thus one has

$$r_{gc}^{\dagger}(865)=r_{gc}(865)=r_{path}(865)$$

 $r_{gc}^{\dagger}(775)=g(775)*r_{gc}(775)=r_{path}^{\dagger}(775).$

- DB : oligotrophic sites (-> r_w=0) + homogeneity in space and time (-> alpha)
- In the VIS, once the NIR is calibrated, gains are computed thanks to

$$r_{path}^{\dagger}(l_{VIS}) = r_{path}(l_{VIS})$$
 and $t_{d}^{\dagger}(l_{VIS}) = t_{d}(l_{VIS})$
 $r_{w}^{\dagger}(l_{VIS}) = r_{w}^{in-situ}(l_{VIS})$

